Generative adversarial networks with Python
Generative adversarial networks (GANs) are a type of deep learning model that consists of two neural networks - a generator and a discriminator. The generator generates new data instances, while the discriminator evaluates them for authenticity.
Step 1:
In the first step, we need to define the generator network. This network takes random noise as input and generates fake data samples that resemble the real data. We will use a simple feedforward neural network for the generator.
Step 2: Next, we need to define the discriminator network. This network takes input data samples and predicts whether they are real or fake. We will also use a simple feedforward neural network for the discriminator.
Step 3: Now, we can train the GAN model by alternating between training the generator and discriminator networks. We will use the adversarial loss function to train the networks to compete against each other.
In this way, we have successfully implemented a basic generative adversarial network in Python using PyTorch.
import torch import torch.nn as nn class Generator(nn.Module): def __init__(self, input_dim, output_dim): super(Generator, self).__init__() self.model = nn.Sequential( nn.Linear(input_dim, 128), nn.ReLU(), nn.Linear(128, output_dim), nn.Tanh() ) def forward(self, x): return self.model(x)
Step 2: Next, we need to define the discriminator network. This network takes input data samples and predicts whether they are real or fake. We will also use a simple feedforward neural network for the discriminator.
class Discriminator(nn.Module): def __init__(self, input_dim): super(Discriminator, self).__init__() self.model = nn.Sequential( nn.Linear(input_dim, 128), nn.ReLU(), nn.Linear(128, 1), nn.Sigmoid() ) def forward(self, x): return self.model(x)
Step 3: Now, we can train the GAN model by alternating between training the generator and discriminator networks. We will use the adversarial loss function to train the networks to compete against each other.
# Initialize the generator and discriminator generator = Generator(input_dim, output_dim) discriminator = Discriminator(input_dim) # Define the loss function and optimizer criterion = nn.BCELoss() d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=0.0002) g_optimizer = torch.optim.Adam(generator.parameters(), lr=0.0002) # Training loop for epoch in range(num_epochs): for i, real_data in enumerate(data_loader): # Train the discriminator discriminator.zero_grad() real_data = real_data.view(-1, input_dim) real_output = discriminator(real_data) real_loss = criterion(real_output, torch.ones_like(real_output)) noise = torch.randn(batch_size, input_dim) fake_data = generator(noise) fake_output = discriminator(fake_data.detach()) fake_loss = criterion(fake_output, torch.zeros_like(fake_output)) d_loss = real_loss + fake_loss d_loss.backward() d_optimizer.step() # Train the generator generator.zero_grad() fake_output = discriminator(fake_data) g_loss = criterion(fake_output, torch.ones_like(fake_output)) g_loss.backward() g_optimizer.step()
In this way, we have successfully implemented a basic generative adversarial network in Python using PyTorch.
Comments
Post a Comment