Generative adversarial networks with Python

Generative adversarial networks (GANs) are a type of deep learning model that consists of two neural networks - a generator and a discriminator. The generator generates new data instances, while the discriminator evaluates them for authenticity. Step 1: In the first step, we need to define the generator network. This network takes random noise as input and generates fake data samples that resemble the real data. We will use a simple feedforward neural network for the generator.
import torch
import torch.nn as nn

class Generator(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(Generator, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(input_dim, 128),
            nn.ReLU(),
            nn.Linear(128, output_dim),
            nn.Tanh()
        )
    
    def forward(self, x):
        return self.model(x)

Step 2: Next, we need to define the discriminator network. This network takes input data samples and predicts whether they are real or fake. We will also use a simple feedforward neural network for the discriminator.
class Discriminator(nn.Module):
    def __init__(self, input_dim):
        super(Discriminator, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(input_dim, 128),
            nn.ReLU(),
            nn.Linear(128, 1),
            nn.Sigmoid()
        )
    
    def forward(self, x):
        return self.model(x)

Step 3: Now, we can train the GAN model by alternating between training the generator and discriminator networks. We will use the adversarial loss function to train the networks to compete against each other.
# Initialize the generator and discriminator
generator = Generator(input_dim, output_dim)
discriminator = Discriminator(input_dim)

# Define the loss function and optimizer
criterion = nn.BCELoss()
d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=0.0002)
g_optimizer = torch.optim.Adam(generator.parameters(), lr=0.0002)

# Training loop
for epoch in range(num_epochs):
    for i, real_data in enumerate(data_loader):
        # Train the discriminator
        discriminator.zero_grad()
        real_data = real_data.view(-1, input_dim)
        real_output = discriminator(real_data)
        real_loss = criterion(real_output, torch.ones_like(real_output))
        
        noise = torch.randn(batch_size, input_dim)
        fake_data = generator(noise)
        fake_output = discriminator(fake_data.detach())
        fake_loss = criterion(fake_output, torch.zeros_like(fake_output))
        
        d_loss = real_loss + fake_loss
        d_loss.backward()
        d_optimizer.step()
        
        # Train the generator
        generator.zero_grad()
        fake_output = discriminator(fake_data)
        g_loss = criterion(fake_output, torch.ones_like(fake_output))
        g_loss.backward()
        g_optimizer.step()

In this way, we have successfully implemented a basic generative adversarial network in Python using PyTorch.

Comments

Popular posts from this blog

What are the different types of optimization algorithms used in deep learning?

Ten top resources for learning Python programming

Seven common machine learning evaluation metrics