Grid search with Python
Grid search is a technique used to find the best hyperparameters for a machine learning model. It involves searching through a specified grid of hyperparameters and selecting the combination that results in the best performance.
Step 1: Define the hyperparameter grid
Step 2: Instantiate the model and GridSearchCV
Step 3: Fit the model to the data
Step 4: Get the best hyperparameters and score
from sklearn.model_selection import GridSearchCV from sklearn.ensemble import RandomForestClassifier param_grid = { 'n_estimators': [50, 100, 200], 'max_depth': [None, 10, 20], 'min_samples_split': [2, 5, 10] }
Step 2: Instantiate the model and GridSearchCV
rf = RandomForestClassifier() grid_search = GridSearchCV(estimator=rf, param_grid=param_grid, cv=3, n_jobs=-1)
Step 3: Fit the model to the data
grid_search.fit(X_train, y_train)
Step 4: Get the best hyperparameters and score
best_params = grid_search.best_params_ best_score = grid_search.best_score_ print("Best hyperparameters:", best_params) print("Best score:", best_score)
Comments
Post a Comment